Ja n 20 09 Bounds for the return probability of the delayed random walk on finite percolation clusters in the critical case

نویسنده

  • Florian Sobieczky
چکیده

By an eigenvalue comparison-technique[20], the expected return probability of the delayed random walk on critical Bernoulli bond percolation clusters on the twodimensional Euclidean lattice is estimated. The results are generalised to invariant percolations on unimodular graphs with almost surely finite clusters. The approach involves using the special property of cartesian products of finite graphs with cycles of a certain minimal size being Hamiltonian[3].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for the return probability of the delayed random walk on finite percolation clusters in the critical case

By an eigenvalue comparison-technique[16], the expected return probability of the delayed random walk on the finite clusters of critical Bernoulli bond percolation on the two-dimensional Euclidean lattice is estimated. The results are generalised to invariant percolations on unimodular graphs with almost surely finite clusters. A similar method has been used elsewhere[17] to derive bounds for i...

متن کامل

Bounds for the annealed return probability on large finite percolation graphs ∗

Bounds for the expected return probability of the delayed random walk on finite clusters of an invariant percolation on transitive unimodular graphs are derived. They are particularly suited for the case of critical Bernoulli percolation and the associated heavy-tailed cluster size distributions. The upper bound relies on the fact that cartesian products of finite graphs with cycles of a certai...

متن کامل

Ja n 20 09 IS THE CRITICAL PERCOLATION PROBABILITY LOCAL ?

We show that the critical probability for percolation on a d-regular nonamenable graph of large girth is close to the critical probability for percolation on an infinite d-regular tree. This is a special case of a conjecture due to O. Schramm on the locality of pc. We also prove a finite analogue of the conjecture for expander graphs.

متن کامل

An interlacing technique for spectra of random walks and its application to finite percolation clusters

A comparison technique for random walks on finite graphs is introduced, using the well-known interlacing method. It yields improved return probability bounds. A key feature is the incorporation of parts of the spectrum of the transition matrix other than just the principal eigenvalue. As an application, an upper bound of the expected return probability of a random walk with symmetric transition...

متن کامل

On the Spectrum of Lamplighter Groups and Percolation Clusters

Let G be a finitely generated group and X its Cayley graph with respect to a finite, symmetric generating set S. Furthermore, let H be a finite group and H ≀G the lamplighter group (wreath product) over G with group of “lamps” H. We show that the spectral measure (Plancherel measure) of any symmetric “switch–walk–switch” random walk on H ≀G coincides with the expected spectral measure (integrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009